

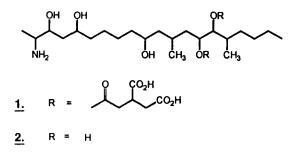
0040-4039(94)01637-2

Relative Stereochemistry of Fumonisin B₁ at C-2 and C-3

Gregory K. Poch, Richard G. Powell,

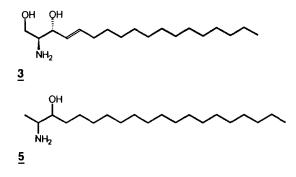
Ronald D. Plattner, and David Weisleder

USDA, Agricultural Research Service, MWA,


Bioactive Constituents Research,

National Center for Agricultural Utilization Research,

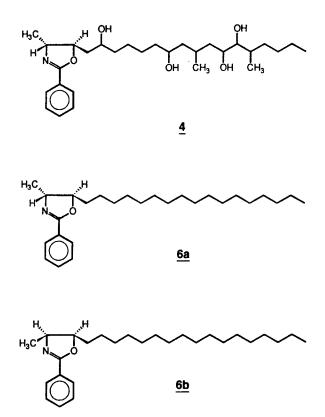
1815 N. University Street, Peoria, IL 61604.


Abstract: Relative stereochemistry of the mycotoxin fumonisin B₁ at C-2 and C-3 has been established as three by NMR studies of synthetic oxazoline derivatives.

Function B_1 (1) belongs to a class of mycotoxins first reported from cultures of *Fusarium moniliforme* isolated from corn (Zea mays).¹ Various diseases including leucoencephalomalacia in horses and pulmonary edema in swine have been attributed to ingestion of *Fusarium moniliforme* contaminated grains containing fumonisins.^{2,3} Neoplastic activity in rat livers and esophogeal cancer in humans have been also reported.^{4,5} Although the planar structure of fumonisin B_1 is well known,¹ the relative and absolute stereochemistry of the eight chiral centers of this compound, or of the hydrolysis product (2), have not been elucidated. Fumonisin

 B_1 has structural similarities to D-erythro-sphingosine (2S, 3R) (3) and the fumonisins have been shown to be inhibitors of sphingosine biosynthesis.^{6,7} Thus, stereochemistry of the chiral centers of fumonisin B_1 is important in order to understand structure-activity relationships of fumonisin B_1 and related compounds with regard to inhibition of sphingosine biosynthesis.

To determine stereochemistry at C-2 and C-3, fumonisin B_1 was first subjected to basic hydrolysis conditions (2N KOH; 2.5 hr) in order to remove the two propane, 1,2,3 tricarboxylic acid side chains. The purpose of this hydrolysis was to increase solubility of the compound in more non-polar solvents, and to reduce complications due to side reactions. The hydrolyzed backbone of fumonisin B_1 (2) was then transformed into the corresponding oxazoline (4) by treating (2) in CH₂Cl₂ with a slight excess of methyl benzimidateHCl at room temperature for 3 days, and 4 was purified by RP-HPLC. Literature indicates that preparation of oxazolines by this method occurs without inversion; i.e., methyl-*erythro*-2-amino-3-hydroxycaproate yields *cis*-2-phenyl-4-carbethoxy-5-propyl-2-oxazoline and ethyl *threo*-2-amino-3-hydroxycaproate yields *trans*-2-phenyl-4carbethoxy-5-propyl-2-oxazoline.^{8,9}



Synthetic analogs of fumonisin B_1 , such as 2-amino-3-hydroxyeicosane (5), have also been prepared in our ongoing research. Preparation of 2-amino-3-hydroxyeicosane was accomplished by oxidation of octadecanol to octadecanal, followed by nitoethylation¹⁰ using sodium methoxide in methanol. This procedure yielded a mixture of 3-hydroxy-2-nitroeicosane diastereomers which was reduced (5% Pd-C and ammonium formate) to provide a 1:1 diastereomeric mixture of 2-amino-3-hydroxyeicosanes (5). Separation of diastereomers was facilitated by conversion to the corresponding oxazolines (6a and 6b) in a fashion similar to that described for the preparation of 4, and resolution of the diastereomers (6a and 6b) was accomplished by RP-HPLC.

Upon analysis of the ¹H NMR data for each isolated diastereomer, and by comparison with model compounds from the literature^{11,12} the stereochemistry was deduced as *trans* for oxazoline **6a** and as *cis* for oxazoline **6b**: **6a** [¹H NMR (CD₃OD) H-1, 1.32 (d 6.7), H-2, 3.89 (dq 6.7, 6.7), H-3, 4.27 (ddd 7.2, 5.8); ¹³C NMR (CD₃OD) 21.7 (C-1), 88.6 (C-2), 67.8 (C-3); and **6b** [¹H NMR (CD₃OD) H-1, 1.21 (d 7.0), H-2, 4.32 (dq 9.0, 7.0), H-3, 4.71 (ddd 9.4, 3.9); ¹³C NMR (CD₃OD) 15.8 (C-1), 84.8 (C-2), 63.9 (C-3).

Accordingly, the oxazoline of the hydrolyzed backbone of fumonisin B₁ (4) was assigned as *trans* by comparison of NMR literature values (*trans* versus *cis*), and from NMR data of synthetic oxazolines 6a (*trans*) versus 6b (*cis*): 4 [¹H NMR (CD₃OD) H-1, 1.40 (d 6.7), H-2, 4.05 (dq 6.7, 6.7), H-3, 3.87 (ddd 7.2, 5.8); ¹³C

NMR (CD₃OD) 20.6 (C-1), 87.5 (C-2), 66.5 (C-3). The upfield shift of H-3 observed in the NMR spectrum of 4 is apparently due to the additional chiral hydroxyl group at C-5.

Thus, we conclude that compound 2 is the *threo*-2-amino-3-hydroxy derivative and that the relative stereochemistry at C-2 and C-3 of fumonisin B_1 (1) is opposite that of sphingosine (3). In a parallel study, ApSimon et al.¹³ have deduced the same relative stereochemistry for 1 at C-2 and C-3. To our knowledge this is the first literature report of the use of oxazoline derivatives for the separation of diastereomers and determination of relative stereochemistry of the chiral centers of a natural product containing vicinal hydroxy and amino substituents.

References

 Bezuidenhout, S.C.; Gelderblom, W. C. A.; Gorst-Allman, C. P.; Horak, R. M.; Marasas, W. F. O.; Spiteller, G.; Vleggaar, R. J. Chem. Soc., Chem. Commun. 1988, 743.

- Marasas, W. F. O.; Kellerman, T. S.; Gelderblom, W. C. A.; Coetzer, J. A. W.; Theil, P. G.; van der Lugt, J. J.; Onderstepoort. J. Vet. Res. 1988, 55, 197.
- Harrison, L. R.; Colvin, B.; Green, J. T.; Newman, L. E.; Cole, J. R.; J. Vet. Diagn. Invest., 1990 2, 217.
- 4. Voss, K. A.; Norred, W.P.; Plattner, R. D.; Bacon, C. W., Fd. Chem. Toxicol., 1989, 27, 89.
- 5. Marasas, W. F. O.; Jaskieicz, K.; Venter, F. S.; van Schalkwyk, D. J. S. Afr. Med. J., 1988, 74, 110.
- Wang, E.; Norred, W. P.; Bacon, C. W.; Riley, R. T.; Merill, Jr., A. H. J. Biol. Chem., 1991, 22, 14486.
- 7. Merrill, Jr., A. H.; van Echten, G.; Wang, E.; Sandhoff, K. Biol. Chem., 1993, 268, 27299.
- 8. Pascual, J.; Sole, G. An. Real Soc. Espan. Fis. Quim. Ser B, 1958, 54, 81; Chem. Abst., 1958, 52, 19929.
- 9. Elliot, D. F. J. Chem. Soc., 1949, 589.
- Rosini, G.; The Henry (Nitroaldol) Reaction in Comprehensive Organic Synthesis; Trost, B. M., and Fleming, I., Eds; Pergamon Press: New York, 1991; vol. 2, pp. 321-340.
- 11. Wohl, R. A.; Cannie, J. J. Org. Chem., 1973, 38, 1787.
- 12. Foglia, T. A.; Gregory, L. M.; Maerker, G. J. Org. Chem., 1970, 35, 3779.
- 13. ApSimon, J. W.; Blackwell, B. A.; Edwards, O. E.; Fruchier, A. Tetrahedron Lett., accompanying communication.

(Received in USA 30 June 1994; revised 16 August 1994; accepted 23 August 1994)